Встречное и попутное фрезерование. Особенности технологий встречного и попутного фрезерования. Попутное фрезерование – недостатки и достоинства

    Ну зачем так жестко.. у старика же пенсии на валидол не хватит) Профессора Стивена Майлса в Оксфорде нет, это художник по костюмам в Голливуде. Виктор, выдыхайте) Кстати, на выходных посчастливилось побывать в компании с известным медиумом, участником 9 сезона "Битвы экстрасенсов". По моей просьбе был вызван дух профессора Бочарова. Тот поведал, что никакого Турту с его открытием современности не знает и на форумах ничего не писал (?).

    @lineyka2 То что согласен, это хорошо и это надо исправлять. Для начала включить воображение и попытаться построить всё однородно - если это листовой материал, то не стоит без надобности вкраплять туда бобышки (хотя это дело вкуса) Добиваться полной определённости эскизов Hide (чтобы все объекты эскиза были черненькими, а не кое-как) Во многих случаях для сопряжений в сборке удобно использовать базовую геометрию и в данной конструкции она явно отслеживается - центр вспомогательной окружности. (вот относительно этого центра и надо всё строить) Стараться без лишней надобности не использовать дополнительные плоскости. Для построения базовой кромки в листовом материале достаточно одного контура и не обязательно он должен быть замкнут - это я по поводу детали "панель". Для лучшего восприятия своего будущего творения можно все детали строить в сборке, опять же используя выбранную базовую геометрию. И т.д. и т.п. Учите матчасть. PS Пока писал сей опус меня уже опередили но суть та же самая

    @lineyka2 Начни с простого постулата - если деталь или сборка имеет хоть малейшую симметрию - располагай ее или детали так, чтобы базовые плоскости были в середине детали. Это сильно упрощает работу. Даже сопряжения в сборках можно делать по базовым плоскостям, если соблюдать этот постулат. Второй постулат - лучше много простых корректных полностью определенных эскизов и операций, чем мало сложных и витиеватых. Третий и главный постулат - почитай мануал и пройди упражнения Солидворкс и проектирование твое станет проще и понятнее. Мир САПРу твоему!

    Т.е.Ввы согласны с п.3 ст 1358 Полезная модель признается использованной в продукте, если продукт содержит каждый признак полезной модели, приведенный в независимом пункте содержащейся в патенте формулы полезной модели. В п.3 ст 1358 речь идёт о независимом пункте формулы и о КАЖДОМ его признаке. А независимый пункт формулы может включать в себя как признаки общие с прототипом, так и отличительные (что мы и видим в большинстве патентов, за исключением так называемых пионерских изобретений, формулы которых состоят только из отличительных признаков). Поэтому если хоть один признак из независимого пункта формулы не использован, то патент не использован в объекте.

    Здравствуйте. Уверен что где то ответ на мой вопрос уже есть но найти его у меня не получилось. Требуется создать свою деталь в toolbox. Например вот такую http://docs.cntd.ru/document/gost-20862-81. Сделать её необходимо именно в таком виде как в ГОСТе (геометрия, материал, покрытие со всеми возможными вариациями). Но вот чёткого описания как это сделать я не нахожу. Помогите пожалуйста.

При цилиндрическом фрезеровании ось фрезы параллельна обрабатываемой поверхности; работа осуществляется зубьями, расположенными на цилиндрической поверхности фрезы. При торцовом фрезеровании ось фрезы перпендикулярна к обработанной поверхности; в работе участвуют зубья, расположенные как на торцовой, так и на цилиндрической поверхности фрезы. Торцовое и цилиндрическое фрезерование можно выполнять двумя способами: встречным фрезерованием, когда направление подачи s противоположно направлению вращения фрезы (рис. 8.10, а), и попутным фрезерованием (рис. 8.10, б), когда направление подачи s совпадает с направлением вращения фрезы.
При встречном фрезеровании нагрузка на зуб фрезы увеличивается постепенно, резание начинается в точке 1 и заканчивается в точке 2 с наибольшей толщиной атах срезаемого слоя (рис. 8.10, а).
При попутном фрезеровании зуб начинает резание со слоя наибольшей толщины, поэтому в момент входа зуба в контакт с обрабатываемой заготовкой наблюдается явление удара. При встречном фрезеровании процесс резания происходит спокойнее, так как толщина срезанного слоя возрастает плавно и, следовательно, нагрузка на станок возрастает постепенно. Попутное фрезерование следует выполнять на станках, имеющих достаточную жесткость и виброустойчивость, и главным образом при отсутствии зазора в сопряжении ходовой винт-гайка продольной подачи стола.
При обработке заготовок с черной поверхностью (по корке) попутное фрезерование применять не следует, так как при врезании зуба фрезы в твердую корку происходит преждевременный износ и выход из строя фрезы. При фрезеровании заготовок с предварительно обработанными поверхностями попутное фрезерование предпочтительнее встречного, что объясняется следующим. При попутном фрезеровании заготовка прижимается к столу, а стол к направляющим, благодаря чему повышаются жесткость

Инструмента и качество обработанной поверхности. При встречном же фрезеровании фреза стремится оторвать заготовку от поверхности стола.
Как при попутном, так и при встречном фрезеровании можно работать при движении стола в обоих направлениях, что позволяет выполнять черновое и чистовое фрезерование за одну операцию.

71. Торцевое фрезерование .

Торцевое фрезерование выполняется исключительно при помощи торцевых фрез. Для снятия припуска к вращательному движению фрезы также добавляется поступательное движение. Таким образом, в основном осуществляется фрезеровка металла на горизонтально-фрезерных станках.

Торцевые фрезы предназначены для обработки плоскостей на вертикально- и горизонтально- фрезерных станках. Торцевые фрезы имеют зубья, расположенные на цилиндрической пов-ти и на торце. Делятся на: насадные(с мелкими и крупными зубьями) и на насадные со вставленными ножами. «+» более жесткое крепление на оправке или шпинделе, более плавная работа из-за большого кол-ва одновременно работающих зубьев.

Торцовые фрезы

Торцовые фрезы широко применяются при обработке плоскостей на вертикально-фрезерных станках. Ось их устанавливается перпендикулярно обработанной плоскости детали. В отличие от цилиндрических фрез, где все точки режущих кромок являются профилирующими и формируют обработанную поверхность, у торцовых фрез только вершины режущих кромок зубьев являются профилирующими. Торцовые режущие кромки являются вспомогательными. Главную работу резания выполняют боковые режущие кромки, расположенные на наружной поверхности.

Так как на каждом зубе только вершинные зоны режущих кромок являются профилирующими, формы режущих кромок торцовой фрезы, предназначенной для обработки плоской поверхности, могут быть самыми разнообразными. В практике находят применение торцовые фрезы с режущими кромками в форме ломаной линии либо окружности. Причем углы в плане Ф на торцовых фрезах могут меняться в широких пределах. Наиболее часто угол в плане Ф на торцовых фрезах принимается равным 90° или 45-60°. С точки зрения стойкости фрезы его целесообразно выбирать наименьшей величины, обеспечивающей достаточную виброустойчивость процесса резания и заданную точность обработки детали.

Торцовые фрезы обеспечивают плавную работу даже при небольшой величине припуска, так как угол контакта с заготовкой у торцовых фрез не зависит от величины припуска и определяется шириной фрезерования и диаметром фрезы. Торцовая фреза может быть более массивной и жесткой, по сравнению с цилиндрическими фрезами, что дает возможность удобно размещать и надежно закреплять режущие элементы и оснащать их твердыми сплавами. Торцовое фрезерование обеспечивает обычно большую производительность, чем цилиндрическое. Поэтому в настоящее время большинство работ по фрезерованию плоскостей выполняется торцовыми фрезами.

Фрезерование, в зависимости от направления подачи и используемого металлорежущего инструмента, может быть:

  • встречным;
  • попутным.

Выбор в пользу той или иной технологии осуществляется на основании не только типа фрезы и направления подачи, но и толщины среза. При этом и встречное, и попутное фрезерование обладают как преимуществами, так и недостатками.

Специфика технологии попутного фрезерования

Под данной разновидностью фрезерных работ подразумевается, что обрабатываемое металлоизделие перемещается в одном направлении с движением фрезы. К достоинствам этой технологии можно отнести:

  • простоту удаления образуемой в ходе работ стружки с заготовки, поскольку она остается за инструментом;
  • отсутствие необходимости монтажа специальных зажимных приспособлений на металлорежущее оборудование, так как заготовка прижимается к столу за счет сил резания;
  • обеспечение отменной шероховатости за счет плавного снятия припуска с болванки;
  • медленный и равномерный износ зубьев фрезы, что позволяет снизить себестоимость фрезерных работ и продлить эксплуатационный период режущего инструмента.

Без «минусов» попутное фрезерование также не обходится. Прежде всего, при данном виде обработки нужно проверить устройство передвижения стола на наличие зазоров. Если они обнаруживаются, то следует быть готовым к сильным вибрациям, которые негативно отображаются на качестве работ.

Еще одна проблема – сильная ударная нагрузка на зубья фрез. Следовательно, чтобы сделать возможным использование фрез, станок должен обладать высокой жесткостью. Только на таких металлорежущих агрегатах можно максимально надежно закрепить заготовку.

Попутное фрезерование не подходит для обработки штамповок, поковок и прочих металлоизделий с необработанной поверхностью. Это объясняется тем фактом, что подобные болванки содержат особые включения, при попадании на которые зубья фрезы начинают выкрашиваться.

Характерные черты встречного фрезерования

Встречное фрезерование или фрезерование «против подачи» (так его называют многие специалисты) – способ металлообработки, при котором инструмент вращается в направлении, противоположном подаче обрабатываемого изделия. Реализация технологии сопровождается сложностями с отводом стружки. Выполняется этот процесс крайне неудобно из-за того, что образуемая стружка скапливается перед фрезой, а это значительно ускоряет ее износ.

При закреплении заготовки на столе необходимо применять специальные зажимы, обеспечивающие прочную фиксацию. Особенностью таких приспособлений является усложнение конструкции станка и снижение его эффективности.

Встречное фрезерование практически не используется при чистовой металлообработке, поскольку стружка серьезно повреждает обработанную металлическую поверхность. Кстати, неравномерность толщины снимаемого слоя металла – еще один недостаток данной методики металлообработки.

Что касается «плюсов» встречного фрезерования, то они сводятся к:

  • упрочнению поверхностного слоя детали, обусловленного деформацией материала;
  • мягкому осуществлению процесса резания, независимо от обрабатываемого металла. При этом плавно нагружается фрезерный станок.

В итоге, каждый из приведенных выше типов фрезерования обладает и преимуществами, и недостатками. Из этого следует, что выбор методики должен осуществляться индивидуально для каждого случая с учетом требуемой чистоты обработки. Узнать больше о фрезеровании можно на

Фрезерование это есть ни что иное как механическая обработка разного рода материалов методом резания. Фрезерование выполняется для того, чтобы получить деталь, которая будет иметь необходимую шероховатость, форму или размер в обработанном виде.

Многолезвийный инструмент, который устанавливается на станке, в процессе фрезерования обычно совершает движение вращения, а заготовка, обрабатываемая с помощью этого режущего инструмента, движется в поступательном режиме.

Сам процесс резания при фрезеровке будет характеризоваться сменяющими друг друга холостыми и рабочими циклами зубьев фрез. Кроме того, могут меняться температурные колебания нагревания зубьев, сменой нагрузки, подаваемой на каждый зуб фрезы или сменой толщины снимаемой стружки.

Во время фрезеровки резание детали происходит исключительно на части дуги окружности и только до тех пор, пока зубья находятся в контакте с материалом, который обрабатывается. После этого следует холостой ход.

В процессе фрезерования каждый зуб фрезы должен преодолеть сопротивление своему действию со стороны обрабатываемого материала и силы трения, которые будут действовать на поверхности зубьев фрезы. Как правило, во время резки с заготовкой контактирует не один зуб, а сразу несколько, поэтому станку приходится преодолевать суммарное противодействие. В это время действует суммарная сила резания, она складывается из всех сил, которые действуют на зубья. Схема, по которой будут действовать силы резания во время фрезерования, будет зависеть от способа фрезеровки и типа рабочей фрезы.

Фрезерование, как радиальное, выполняемое торцевой фрезой , так и тангенциальное, с помощью цилиндрической фрезы, может быть выполнено двумя способами. Один из них – встречное фрезерование или против подачи. В этом случае направление движения материала будет противоположно направлению движения фрезы. Второй тип называется попутным фрезерованием или по подаче. В этом случае вращение самой фрезы и подачи будут совпадать.

Если фрезерование встречное , то толщина этого среза будет меняться от нуля, который можно заметить на входе зуба и до максимального значения. Его можно будет зарегистрировать при выходе зуба из контакта с заготовкой, которую он обрабатывает.

Если фрезерование попутное , то процесс резки будет наоборот происходить от максимума до нулевого значения.

Попутное фрезерование начинается с удара, происходящего в момент, когда зуб входит в контакт с обрабатываемой заготовкой, так как толщина среза в данном случае имеет максимальное значение. По этой причине попутную фрезеровку допускается производить только на станках, которые обладают достаточным уровнем жесткости. Кроме того, обязательно контролировать, чтобы не было зазора в сопряжении ходовой винт гайка между поперечной и продольной подачей фрезерного стола.

Если смотреть в целом, то попутная фрезеровка будет более выгодной при чистовых работах, когда корку, образующуюся на поверхности материала, уже сняли, а глубина срезаемого слоя не большая.

Процесс обработки при встречном фрезеровании характеризуется более спокойным резанием, так как толщина удаляемого материала нарастает плавно, а нагрузка на станок увеличивается постепенно. Встречная фрезеровка значительно полезнее при черновой обработке материала, при наличии корки или окалины (поковки).

К станкам с числовым программным управлением предъявляются особые повышенные требования по люфтам механизмов измеряемых в сотых долях миллиметра, по этому попутному фрезерованию здесь отдаётся предпочтение, что не всегда реализуемо на обычных станках.

Рисунок 101

При встречном фрезеровании направление подачи заготовки не совпадает с главным движением. При попутном – совпадает. Преимущества встречного фрезерования:

При наличии твердой корки на заготовке зуб фрезы подрезает ее снизу, а не ударяется и не выкрашивается;

Не наблюдается подхватывания заготовки силами резания, при котором резко увеличивается S z на величину зазора в паре винт-гайка цепи подач, поэтому можно работать даже на изношенном станке.

Недостатки:

Зуб фрезы не сразу врезается, а проскальзывает (а=0) поэтому наклепывает поверхность резания и сам изнашивается;

Стружка остается на передней поверхности и при врезании выкрашивает зуб фрезы.

При попутном фрезеровании все наоборот, поэтому на новом станке лучше применять метод попутного фрезерования, так как качество обработки выше.

5.8 Протягивание

Протягиваются поверхности различной конфигурации, как внутренние, так и наружные.

Скорость резания при протягивании – 2-15 м/мин.

Точность обработки 6-9 квалитеты, шероховатость Ra 0,63…2,5 мкм.

5.8.1 Конструкция протяжки

Если длина протяжки не превышает 15 диаметров и протяжка работает на сжатие, то она называется прошивкой.

Р
исунок 102

Р
исунок 103

1 – хвостовик;

2 – шейка;

4 – режущая часть;

5 – калибрующая часть;

6 – задний конец протяжки.

Рабочая часть протяжки изготавливается из сталей Р9, Р18, Р9Ф5, ХВГ (наименьшая способность деформироваться).

5
.8.2 Геометрические параметры

Рисунок 104

5.8.3 Элементы режима резания

V p – вдоль оси протяжки,

S z – подача на зуб, разность высоты соседних зубьев режущей части,

a – равняется подаче на зуб S z ,

b - зависит от формы и конструкции протяжки, которая определяется обрабатываемой поверхностью,

,

.

На калибрующей части подъёма нет для улучшения класса шероховатости.

α=2…4 0 на режущей части протяжки, α=1…2 0 на калибрующей части.

5.8.4 Схемы протягивания

    Профильная.

Рисунок 105

Получается наилучшее качество и точность обработки. Применяется редко из-за сложности изготовления зубьев протяжки.

    Генераторная.

Рисунок 106

Точность и класс шероховатости ниже. Метод применяется широко, когда нет высоких требований к детали.

    Прогрессивная (групповая).

Осуществляется по генераторной или профильной схеме.

Припуск между одинаковыми по высоте зубьями в группе разделяется по ширине. Снижаются силы резания, увеличивается стойкость.

Рисунок 107

5.8.5 Износ и стойкость протяжек

Износ по передней поверхности незначителен. Преимущественно изнашивается задняя поверхность протяжек. Для протяжки назначают технологический критерий изнашивания, так как протяжка является размерным инструментом. Величина изнашивания – до 0,2-0,3 мм, затем протяжка перетачивается. Температура резания является основным фактором, влияющим на изнашивание, так как при холостом ходе протяжка полностью охлаждается и скорости резания низкие. Очень мала толщина срезаемого слоя. Это основной фактор изнашивания.

S
z =0,02-0,2 мкм.

Рисунок 108

Процесс резания возможен при a>ρ.

Стойкость от 120 до 600 мин.

ρ – радиус округления режущей кромки.

Протяжка применяется только в крупносерийном и массовом производстве и как исключение в ремонтных цехах.