Два вида механической энергии. Механическая энергия. Ее виды. Механическая работа и мощность. КПД

Кинетическая энергия - скалярная физическая величина, характеризующая движущееся тело и равная для материальной точки половине произведения ее массы на квадрат ее скорости:

Единицей кинетической энергии в СИ является джоуль (Дж).

При скоростях, близких к скорости света, следует пользоваться иным определением кинетической энергии.

Кинетическая энергия протяженного тела равна сумме кинетических энергий его малых частей, которые можно считать материальными точками.

Используя второй закон Ньютона, можно доказать теорему об изменении кинетической энергии тела: в инерциальной системе отсчета изменение кинетической энергии тела равно работе всех сил, как внутренних, так и внешних, действующих на это тело.

Если на прямолинейном участке траектории на тело, совершающее перемещение x, действуют две постоянные силы и, направленные под углами 1 и 2 к перемещению, то изменение кинетической энергии тела равно:

Механическая работа и мощность. КПД

Механическая работа A постоянной силы на перемещение - это скалярная физическая величина, равная произведению модуля силы F, модуля перемещения s и косинуса угла между направлениями силы и перемещения.

А = Fs cos =Fxs,

где Fx - проекция силы на направление перемещения (рис. 4).

Работа постоянной силы в зависимости от угла между векторами силы и перемещения может быть положительной, отрицательной и равной нулю (рис. 5).


Единицей работы в СИ является джоуль (Дж).

В общем случае действия переменной силы на криволинейном участке траектории расчет работы оказывается более сложным.

Мощность - скалярная физическая величина, равная отношению работы силы A к промежутку времени t, в течение которого она была произведена:

Мощность силы может измеряться во времени N(t)

Единицей мощности в СИ является ватт (Вт).

При воздействии силы на тело, движущееся со скоростью (рис. 7), мощность этой силы равна:

Часто термины работа и мощность относят к устройству, благодаря которому возникают силы, совершающие работу. Говорят о работе человека, мощности электродвигателя или двигателя автомобиля вместо работы и мощности силы натяжения веревки, с которой человек тянет сани, или работы и мощности внутренних сил или мощности сил сопротивления воздуха при движении автомобиля. В простейших случаях (подъемный кран поднимает груз) это вполне допустимо, однако в ряде случаев требует более аккуратного рассмотрения. Так, в случае движения автомобиля силой тяги является сила трения шин об асфальт, а ее работа равна нулю. В случае вертолета, зависшего над землей, сила тяги равна силе тяжести, мощность силы тяги равна нулю, однако энергия сгорающего топлива затрачивается на сообщение кинетической энергии потокам воздуха, отбрасываемого вниз.

При использовании простейших механизмов человек стремится совершить действия, которые не под силу выполнить «голыми руками» (поднять груз, сдвинуть тело и т.д.). Такие механизмы характеризуются физической величиной, называемой коэффициентом полезного действия (КПД). В механике обычно под КПД механизма понимают отношение полезной работы к затраченной.

В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Пусть тело В , движущееся со скоростью , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила , касательная составляющая которой вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона

Следовательно,

Работа, совершаемая телом до полной его остановки равна:

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Из формулы (3.7) видно, что кинетическая энергия тела не может быть отрицательной ().

Если система состоит из n поступательно движущихся тел, то для ее остановки необходимо затормозить каждое из этих тел. Поэтому полная кинетическая энергия механической системы равна сумме кинетических энергий всех входящих в нее тел:

Из формулы (3.8) видно, что Е k зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой m i приобрело скорость . Другими словами, кинетическая энергия системы есть функция состояния ее движения .

Скорости существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инерциальной системе отсчета, т.к. иначе нельзя было бы использовать законы Ньютона. Однако, в разных инерциальных системах отсчета, движущихся относительно друг друга, скорость i -го тела системы, а, следовательно, его и кинетическая энергия всей системы будут неодинаковы. Таким образом, кинетическая энергия системы зависит от выбора системы отсчета, т.е. является величиной относительной .

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.

Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (Е п = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P , поднятого на высоту h , потенциальная энергия будет равна (Е п = 0 при h = 0); для груза, прикрепленного к пружине, , где - удлинение (сжатие) пружины, k – ее коэффициент жесткости (Е п = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (Е п = 0 при ).


Рассмотрим потенциальную энергию системы Земля – тело массой m , поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. Если тело падает по вертикали, то

где Е no – потенциальная энергия системы при h = 0 (знак «-» показывает, что работа совершается за счет убыли потенциальной энергии).

Если это же тело падает по наклонной плоскости длиной l и с углом наклона к вертикали (, то работа сил тяготения равна прежней величине:

Если, наконец, тело движется по произвольной криволинейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинейных участков . Работа силы тяготения на каждом из таких участков равна

На всем криволинейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.

Таким образом, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

В свою очередь работа dA выражается как скалярное произведение силы на перемещение , поэтому последнее выражение можно записать следующим образом:Полная механическая энергия W системы равна сумме ее кинетической и потенциальной энергий:

Из определения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, т.е. зависит только от положения и скоростей всех тел системы.

В механике различают два вида энергии: кинетическую и потенциальную. Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.
Пусть тело В , движущееся со скоростью v , начинает взаимодействовать с другим телом С и при этом тормозится. Следовательно, тело В действует на тело С с некоторой силой F и на элементарном участке пути ds совершает работу

По третьему закону Ньютона на тело В одновременно действует сила -F , касательная составляющая которой -F τ вызывает изменение численного значения скорости тела. Согласно второму закону Ньютона


Следовательно,

Работа, совершаемая телом до полной его остановки равна:


Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

(3.7)

Из формулы (3.7) видно, что кинетическая энергия тела не может быть отрицательной (E k ≥ 0 ).
Если система состоит из n поступательно движущихся тел, то для ее остановки необходимо затормозить каждое из этих тел. Поэтому полная кинетическая энергия механической системы равна сумме кинетических энергий всех входящих в нее тел:

(3.8)

Из формулы (3.8) видно, что E k зависит только от величины масс и скоростей движения, входящих в нее тел. При этом неважно, каким образом тело массой m i приобрело скорость ν i . Другими словами, кинетическая энергия системы есть функция состояния ее движения .
Скорости ν i существенно зависят от выбора системы отсчета. При выводе формул (3.7) и (3.8) предполагалось, что движение рассматривается в инерциальной системе отсчета, т.к. иначе нельзя было бы использовать законы Ньютона. Однако, в разных инерциальных системах отсчета, движущихся относительно друг друга, скорость ν i i -го тела системы, а, следовательно, его E ki и кинетическая энергия всей системы будут неодинаковы. Таким образом, кинетическая энергия системы зависит от выбора системы отсчета, т.е. является величиной относительной .
Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними.
Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы. Так, для груза весом P , поднятого на высоту h , потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2 , где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).
Рассмотрим потенциальную энергию системы Земля – тело массой m , поднятого на высоту h над поверхностью Земли. Уменьшение потенциальной энергии такой системы измеряется работой сил тяготения, совершаемой при свободном падении тела на Землю. Если тело падает по вертикали, то

Где E no – потенциальная энергия системы при h = 0 (знак «-» показывает, что работа совершается за счет убыли потенциальной энергии).
Если это же тело падает по наклонной плоскости длиной l и с углом наклона α к вертикали (lcosα = h ), то работа сил тяготения равна прежней величине:

Если, наконец, тело движется по произвольной криволинейной траектории, то можно представить себе эту кривую состоящей из n малых прямолинейных участков Δl i . Работа силы тяготения на каждом из таких участков равна

На всем криволинейном пути работа сил тяготения, очевидно, равна:

Итак, работа сил тяготения зависит только от разности высот начальной и конечной точек пути.
Таким образом, тело в потенциальном (консервативном) поле сил обладает потенциальной энергией. При бесконечно малом изменении конфигурации системы работа консервативных сил равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:


В свою очередь работа dA выражается как скалярное произведение силы F на перемещение dr , поэтому последнее выражение можно записать следующим образом:

(3.9)

Следовательно, если известна функция E n (r) , то из выражения (3.9) можно найти силу F по модулю и направлению.
Для консервативных сил

Или в векторном виде


где

(3.10)

Вектор, определяемый выражением (3.10), называется градиентом скалярной функции П ; i, j, k - единичные векторы координатных осей (орты).
Конкретный вид функции П (в нашем случае E n ) зависит от характера силового поля (гравитационное, электростатическое и т.п.), что и было показано выше.
Полная механическая энергия W системы равна сумме ее кинетической и потенциальной энергий:


Из определения потенциальной энергии системы и рассмотренных примеров видно, что эта энергия, подобно кинетической энергии, является функцией состояния системы: она зависит только от конфигурации системы и ее положения по отношению к внешним телам. Следовательно, полная механическая энергия системы также является функцией состояния системы, т.е. зависит только от положения и скоростей всех тел системы.

Механическая энергия - одна из форм энергии; получившей такое название потому, что эта энергия проявляется при механическом движении и взаимодействии вещественных объектов. Вещественные объекты в механике моделируются с помощью систем материальных точек. Твёрдое тело - это система точек, взаимное расположение которых сохраняется неизменным.

Энергия движения точек (тел) называется кинетической энергией (обозначается буквой Т) .

Энергия взаимодействия точек (тел) называется потенциальной энергией (обозначается буквой П ). Сам термин «потенциальная» означает возможность движения тел в результате обладания этой энергией.

При движении точки (или центра масс тела) кинетическая энергия равна:

где m - масса точки (тела);

 - скорость точки (или центра масс тела).

Примечание. При поступательном движении тело рассматривается как материальная точка, помещённая в центре масс.

Если тело вращается, кинетическая энергия вычисляется по формуле:

Т=J 2 , (2)

где J - момент инерции тела относительно оси вращения;

- угловая скорость тела.

Примечание. Для более сложных типов движения тел (плоское, свободное), кинетическая энергия равна сумме энергии центра масс и вращения вокруг оси, проходящей (условно) через центр масс.

Потенциальная энергия определяется видом взаимодействия. Если изучаемые точки (тела) электронейтральны, тогда для исследований вблизи поверхности Земли надо учитывать только гравитационное взаимодействие с Землей, которое зависит от расстояния до центра земного шара.

В Приложении (см.) показано, что до высот над поверхностью Земли Н <10 км потенциальная энергия гравитационного взаимодействия точки (тела), имеющей массу m , с достаточной точностью определяется приближённой формулой:

  - mgR o + mgH , (3)

где m - масса исследуемой точки (тела);

g- ускорение силы тяготения;

R o - радиус Земли;

Н - высота подъёма точки (или центра масс тела) над поверхностью Земли.

Для практических расчётов формулу (3) используют в изменённом виде, т.к. в любых исследованиях требуется знать только разность потенциальных энергий для различных высот Н 2 и Н 1 над поверхностью Земли. Поэтому энергию на нижнем уровне обычно принимают равной нулю, и от этого уровня отсчитывают высоту подъёма h=H 2 - H 1 , где Н 1 - высота нижнего уровня над поверхностью Земли, которую не требуется находить, т.к. она не входит в расчёты. В итоге получается формула гравитационной потенциальной энергии в виде:

= mgh (4)

Точность расчёта по формуле (4) увеличивается с уменьшением высоты над поверхностью Земли.

Формулы для потенциальной энергии в механике выводятся посредством расчёта работы, которую совершают силы при переходе точки (тела) из одного места пространства в другое (см. Приложение).

Работой силы называется физическая величина, являющаяся мерой действия силы по изменению и преобразованию разных форм энергии и равная скалярному произведению вектора силы и вектора перемещения точки её приложения.

Элементарная работа dA силы F равна:

dA = (
)
, (5)

где
- элементарное перемещение точки приложения силы.

При вращательном движении тела работа определяется моментом силы, приводящим тело во вращение:

dA = M p d , (6)

где М р - момент силы относительно оси вращения;

d - элементарный угол поворота тела.

Интегрирование формул (5) и (6) позволяет находить работу силы на конечных перемещениях и углах поворота. Единицей измерения работы (как и энергии) является - Джоуль [Дж].

Понятие работы силы позволяет раскрыть замечательные свойства сил. Оказывается, все силы следует разделить на два вида: потенциальные (консервативные) и непотенциальные (неконсервативные) силы. Потенциальными в механике называются три силы: гравитационную, электрическую и упругой деформации. К непотенциальным относятся силы трения и сопротивления.

Замечательным свойством потенциальных сил является то, что при действии таких сил кинетическая энергия может быть преобразована только в потенциальную энергию (и наоборот). При этом работа силы точно равна изменению кинетической энергии.

При действии непотенциальных сил кинетическая и потенциальная энергия преобразуются (полностью или частично) в другие формы: например, внутреннюю энергию и энергию излучения.

Сумма кинетической и потенциальной энергии системы точек (тел) называется механической энергией.

Е = Т+П (7)

Для механической энергии установлен закон сохранения, который формулируется следующим образом: механическая энергия системы сохраняется, если работу на перемещении точек (тел) системы выполняют внешние и внутренние потенциальные силы, либо - если эта система изолирована и в ней действуют только потенциальные силы.

Отметим, что условие изолированности - это условие общефизического закона сохранения энергии. Однако для механической энергии существует еще одно условие сохранения, требующее выполнения работы только потенциальными силами, в том числе - внешними, учёт этого условия позволил решить ряд важнейших задач физики, например, рассчитать траектории небесных тел (законы Кеплера) и траектории заряженных частиц (формулы Резерфорда).

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергии.

Полную механическую энергию рассматривают в тех случаях, когда действует закон сохранения энергии и она остаётся постоянной.

Если на движение тела не оказывают влияния внешние силы, например, нет взаимодействия с другими телами, нет силы трения или силы сопротивления движению, тогда полная механическая энергия тела остаётся неизменной во времени.

E пот + E кин = const

Разумеется, что в повседневной жизни не существует идеальной ситуации, в которой тело полностью сохраняло бы свою энергию, так как любое тело вокруг нас взаимодействует хотя бы с молекулами воздуха и сталкивается с сопротивлением воздуха. Но, если сила сопротивления очень мала и движение рассматривается в относительно коротком промежутке времени, тогда такую ситуацию можно приближённо считать теоретически идеальной.

Закон сохранения полной механической энергии обычно применяют при рассмотрении свободного падения тела, при его вертикальном подбрасывании или в случае колебаний тела.

Пример:

При вертикальном подбрасывании тела его полная механическая энергия не меняется, а кинетическая энергия тела переходит в потенциальную и наоборот.

Преобразование энергии отображено на рисунке и в таблице.

Точка нахождения тела

Потенциальная энергия

Кинетическая энергия

Полная механическая энергия

E пот = m ⋅ g ⋅ h (max)

E полная = m ⋅ g ⋅ h

2) Средняя

(h = средняя)

E пот = m ⋅ g ⋅ h

E кин = m ⋅ v 2 2

E полная = m ⋅ v 2 2 + m ⋅ g ⋅ h

E кин = m ⋅ v 2 2 (max)

E полная = m ⋅ v 2 2

Исходя из того, что в начале движения величина кинетической энергии тела одинакова с величиной его потенциальной энергии в верхней точке траектории движения, для расчётов могут быть использованы ещё две формулы.

Если известна максимальная высота, на которую поднимается тело, тогда можно определить максимальную скорость движения по формуле:

v max = 2 ⋅ g ⋅ h max .

Если известна максимальная скорость движения тела, тогда можно определить максимальную высоту, на которую поднимается тело, брошенное вверх, по такой формуле:

h max = v max 2 2 g .

Чтобы отобразить преобразование энергии графически, можно использовать имитацию «Энергия в скейт-парке », в которой человек, катающийся на роликовой доске (скейтер) перемещается по рампе. Чтобы изобразить идеальный случай, предполагается, что не происходит потерь энергии в связи с трением. На рисунке показана рампа со скейтером, и далее на графике показана зависимость механической энергии от места положения скейтера на траектории.

На графике синей пунктирной линией показано изменение потенциальной энергии. В средней точке рампы потенциальная энергия равна \(нулю\). Зелёной пунктирной линией показано изменение кинетической энергии. В верхних точках рампы кинетическая энергия равна \(нулю\). Жёлто-зелёная линия изображает полную механическую энергию - сумму потенциальной и кинетической - в каждый момент движения и в каждой точке траектории. Как видно, она остаётся \(неизменной\) во всё время движения. Частота точек характеризует скорость движения - чем дальше точки расположены друг от друга, тем больше скорость движения.