Системы современных ветродвигателей. Схема, описание. Типы ветроэнергетических установок Типы ветродвигателей

Ветроэнергетикой интересуются многие. Причины такого интереса разные: для кого-то это одна из немногих возможностей обеспечить дом электричеством; кто-то рассматривает ветряк как резервный источник питания; другие хотят получить полную независимость от центральных электросетей. На сегодняшний день такая возможность есть – необходимо установить на участке ветрогенератор и не очень сложное вспомогательное оборудование. Однако некоторые нюансы все же есть, о которых следует знать заранее.

Кинетическая энергия ветра может быть преобразована как в электрическую, так и в механическую или тепловую энергию. Таким образом, при помощи ветра можно не только обеспечить дом электричеством, но и, к примеру, поднять воду со скважины, без промежуточной трансформации кинетической энергии ветрового потока в электрическую.

В том или ином случае понадобится ветроэнергетическая установка, включающая в себя ветродвигеталь, укомплектованный преобразователем энергии и аккумулятором. Преобразователем энергии могут быть электрогенераторы, гидронасосы, компрессоры. К примеру, если ветроэнергетическая установка будет служить только для полива, то нет смысла вначале получать электричество, а затем использовать его для питания электронасосов. Лишнее звено трансформации энергии снижает КПД ветроэнергетической установки. В хозяйственной практике в основном находят применение только два типа преобразователей – электрический и механический (для перекачки воды). В первом случае речь идет о накоплении электрической энергии, которая используется потребителями; во втором о ветронасосах, обеспечивающих необходимое давление в системах капельного орошения, дождевальных установок, бытовых водопроводах.

Типы ветродвигателей

Любой ветродвигатель имеет лопасти, которые, обладая парусностью, принимают на себя часть кинетической энергии ветрового потока. Форма этих лопастей и конструкция ветроколеса может быть разной. Различают три основных типа ветродвигателей: крыльчатые (похожие на пропеллер), роторные (карусельные) и барабанные. Наиболее распространены крыльчатые рабочие органы ветроколеса, ось вращения которых расположена горизонтально. Их доля составляет не менее 90% от общего числа ветродвигателей.

Именно такие «ветряки» в большом количестве можно встретить в Европе, и особенно в Нидерландах. Ветроэнергетические проекты этой страны, стартовавшие еще в средине прошлого века, уже многократно окупили себя. Вопреки расхожему мнению, что ветроэнергетическая установка не способна вырабатывать достаточное количество электроэнергии, адекватное затратам на ее установку и обслуживание, в Голландии целые поселки питаются исключительно от «ветряков». Одна мощная ветроэнергетическая установка способна обеспечить в полном объеме электричеством несколько сот(!) коттеджей. Ветродвигатель такой установки установлен на очень прочную и устойчивую конструкцию, в основе которой лежит заглубленная на 15-20 метров массивная железобетонная плита. Она, как корень дерева, удерживает высокую башню, внутри которой находится лестница, позволяющая обслуживать ветроагрегат. При этом не используются никакие растяжки.

Крыльчатые ветродвигатели состоят из ветроколеса, головки, механизма ориентации (хвоста) и башни (или мачты – в зависимости от размера).

Ветроколесо может быть оснащено от одной до восьми и более лопастей. В зависимости от их количества, ветродвигатели делятся на быстроходные (до 4 лопастей), средней скорости хода (4…8 лопастей) и тихоходные (от 8 лопастей).


Головка сконструирована таким образом, чтобы она могла поворачиваться вокруг вертикальной оси башни. Ее форма зависит от мощности и назначения ветродвигателя – в свою очередь факторы, определяющие систему передаточного механизма, его конструкцию и число ступеней.

Хвост работает по принципу флюгера и разворачивает головку по ветру. Площадь его поверхности зависит от аэродинамических параметров лопастей ветроколеса.

Башня поднимает ветродвигатель выше всех препятствий, которые снижают напорный поток ветра, а также обеспечивает безопасность вращения лопастей. При скорости ветра превышающей 35-45 м/с срабатывает тормозная система, полностью останавливающая ветродвигатель.

Количество лопастей крыльчатого ветроколеса зависит от средней скорости ветра в районе установки ветроэнергетической установки. На открытых пространствах, морских и океанических побережьях используют малолопастные крыльчатые ветродвигатели, для запуска которых необходима минимальная скорость ветра 5-8 м/с. Это наиболее простые по конструкции ветродвигатели, имеющие высокий КПД, однако создающие немало шума.

В районах, где скорость ветра редко превышает 5 м/с, как правило, рекомендуют устанавливать многолопастные ветродвигатели. Они работают практически бесшумно, но также и имеют КПД ниже, чем малолопастные; кроме того, на изготовление многолопастных ветродвигателей уходит больше материалов, т.к. во время работы ветродвигатель данного типа испытывает повышенные гироскопические нагрузки.


Роторные ветродвигатели (они же карусельные) также имеют простую конструкцию, но обладают гораздо меньшим КПД - максимум 18%. Проблема их использования состоит еще и в том, что в них применяются довольно редкие многополюсные электрогенераторы. Роторные ветродвигатели имеют вертикальную ось вращения и лопасти, работающие по типу паруса. Одно из преимуществ такого типа ветродвигателей – отсутствие механизма ориентации. Вертикальная ось вращения позволяет безопасно использовать роторное ветроколесо при малой высоте башни. Такие ветродвигатели запускаются при малой скорости ветра и не шумят. Главный недостаток роторных ветродвигателей в малом коэффициенте использования ветра, поскольку в работе постоянно задействована только часть лопастей; остальные либо преодолевают сопротивление ветра, либо изолируются от него зонтом (кожухом).

За последнее десятилетие рынок ветроэнергетических установок (ВЭУ) существенно пополнился в первую очередь компактными моделями, которые могли бы найти применение в усадьбах и на фермах. Они рассчитаны на небольшую начальную скорость ветра 2,5…3 м/с и установку ветроагрегата на высоте 6…17 м. Номинальное количество электроэнергии вырабатывается уже при 6…8 м/с (скорость вращения ветротурбины 250…300 об/м.).

Ветрогенераторы в работе

Скорость ветра не является постоянной и поэтому получить от преобразователя «чистую» электрэнергию со стабильными параметрами не получается. Генератор, как правило, вырабатывает напряжение 0…56 В. Генерируемая «грязная» энергия аккумулируется батареями, которыми укомплектована ВЭУ, чем и обеспечивается бесперебойная работа системы. В период сильных ветров установка работает на пределе мощности и запасает энергию впрок, чтобы отдавать ее в безветрие или при слабом ветре. Нередко вместе с ветродвигателем используются солнечные батареи, которые обеспечивают заряд аккумуляторов в летний период, когда ветры особенно слабы.


Для преобразования постоянного тока аккумуляторов в переменный с параметрами 220В/50 Гц, ВЭУ оснащаются инверторами.

С целью преодоления пиковых нагрузок ВЭУ сочетают с вспомогательными источниками электроэнергии, такими как дизельные и бензиновые генераторы, а также (в качестве вспомогательной) централизованную электросеть.

Индивидуальные ветроэнергетические установки малой мощности постепенно становятся дешевле и эффективнее. Вместе с этим увеличиваются и перспективы их применения для частных домов и фермерских хозяйств. К примеру, для коттеджей в отдаленных районах немаловажно располагать автономной ветроэнергетической установкой мощностью 20-50 кВт, которая гарантирует работу основного электрооборудования при отсутствии всех иных источников.

Ветронасосы

Поднимать воду из глубины при помощи ветра люди научились давно, однако этот способ не забыт и сегодня, особенно там, где недоступны источники электроэнергии. Идея изобретения проста – использовать энергию ветра для привода водяного насоса.

Наибольшее распространение ветронасосы получили в США. Когда-то они решали судьбу экономики страны, а сегодня стали еще и неким культовым сооружением традиционной обстановки американского ранчо.


На постсоветском пространстве ветронасосы – большая редкость, хотя в период садово-огородного бума средины 80-ых их популярность возросла. Обстоятельства заставили. В наши дни также складываются предпосылки к обращению к уже позабытым «Ромашкам» и «Водолеям», поскольку доля электроэнергии в себестоимости овощной продукции растет из года в год.

Ветромеханический агрегат «Ромашка» был разработан НПО «Ветроэн». Впревые его чертежи были опубликованы в журнале «Моделист-конструктор» в 1988 году, в котором излагалось руководство по самостоятельному изготовлению ветронасоса.

Оба агрегата имеют максимально упрощенную конструкцию. Они предназначены для всасывания воды с глубины до 8 м и работают уже при скорости ветра 3 м/с. Ветроколесо «Ромашки» имеет 12 лопастей и приводит в движение диафрагму насоса посредством кулочково-рычажного механизма с вертикальной тягой, проходящей внутри опоры ветродвигателя.

При скорости ветра 5 м/с ветронасос «Ромашка» поднимает 8-метровой глубины до 300 литров воды в час, и способен доставить ее на высоту до 10 метров. В паре с системой капельного полива данный агрегат предоставляет реальную возможность возделывания огородных культур на отдаленных участках, при наличии там водоема или скважины глубиной до 8 метров.

Содержание статьи

ВЕТРОДВИГАТЕЛЬ, устройство, преобразующее энергию ветра в энергию вращательного движения. Основным рабочим органом ветродвигателя является вращающийся агрегат – колесо, приводимое в движение ветром и жестко связанное с валом, вращение которого приводит в действие оборудование, выполняющее полезную работу. Вал устанавливается горизонтально или вертикально. Ветродвигатели обычно используются для выработки энергии, потребляемой периодически: при накачке воды в емкости, помоле зерна, во временных, аварийных и местных сетях электропитания.

Историческая справка.

Хотя приземные ветры дуют не всегда, меняют свое направление и сила их непостоянна, ветродвигатель представляет собой одну из древнейших машин для получения энергии из природных источников. Из-за сомнительной надежности древних письменных сообщений о ветродвигателях не вполне ясно, когда и где такие машины появились впервые. Но, судя по некоторым записям, они существовали уже до 7 в. н.э. Известно, что в Персии их применяли в 10 в., а в Западной Европе первые устройства этого типа появились в конце 12 в. В течение 16 в. окончательно сформировался шатровый тип голландской ветряной мельницы. Особых изменений в их конструкции не наблюдалось вплоть до начала 20 в., когда в результате исследований были значительно усовершенствованы формы и покрытия крыльев мельниц. Поскольку низкооборотные машины громоздки, во второй половине 20 в. стали строить высокооборотные ветродвигатели, т.е. такие, ветроколеса которых могут совершать большое число оборотов в минуту с высоким коэффициентом использования энергии ветра.

Современные типы ветродвигателей.

В настоящее время применяются три основных типа ветродвигателей – барабанный, крыльчатый (винтового типа) и роторный (с S-образным профилем репеллера).

Барабанный и крыльчатый.

Хотя ветроколесо барабанного типа имеет наименьший коэффициент использования энергии ветра по сравнению с другими современными репеллерами, применяется оно наиболее широко. На многих фермах с его помощью качают воду, если по какой-либо причине нет сетевого электричества. Типичная форма такого колеса с лопастями из листового металла приведена на рис. 1. Ветроколеса барабанного и крыльчатого типа вращаются на горизонтальном валу, так что их необходимо поворачивать на ветер, чтобы получить наилучшие эксплуатационные характеристики. Для этого им придается руль направления – лопасть, расположенная в вертикальной плоскости, чем и обеспечивается разворот ветроколеса на ветер. Диаметр колеса крупнейшего в мире ветродвигателя крыльчатого типа составляет 53 м, максимальная ширина его лопасти равна 4,9 м. Ветроколесо напрямую соединено с электрическим генератором мощностью 1000 кВт, которая развивается при скорости ветра не менее 48 км/ч. Его лопасти регулируются таким образом, что скорость вращения ветроколеса остается постоянной и равной 30 об/мин в диапазоне скоростей ветра от 24 до 112 км/ч. Благодаря тому, что в местности, где располагают такие ветродвигатели, ветры дуют довольно часто, ветроэнергетическая установка обычно вырабатывает ~50% максимальной мощности и питает общественную электросеть. Крыльчатые ветродвигатели широко применяются в отдаленных сельских районах для обеспечения электроэнергией ферм, в том числе для зарядки аккумуляторов систем радиосвязи. Их также используют в бортовых энергетических установках самолетов и управляемых ракет.

S-образный ротор.

Установленный на вертикальном валу S-образный ротор (рис. 2) хорош тем, что ветродвигатель с таким репеллером не надо выводить на ветер. Хотя крутящий момент на его валу меняется от минимального до одной трети от максимального значения за полоборота, он не зависит от направления ветра. Когда гладкий круговой цилиндр вращается, находясь под действием ветра, на тело цилиндра действует сила, перпендикулярная направлению ветра. Это явление называется эффектом Магнуса, в честь немецкого физика, который его изучал (1852). В 1920–1930 А.Флеттнер применил вращающиеся цилиндры (роторы Флеттнера) и S-образные роторы взамен лопастных ветроколес, а также как движители корабля, который совершил переход из Европы в Америку и обратно.

Коэффициент использования энергии ветра.

Мощность, получаемая от ветра, обычно мала – менее 4 кВт развивает агрегат устаревшего типа голландской ветряной мельницы при скорости ветра 32 км/ч. Мощность потока ветра, которую можно использовать, образуется из кинетической энергии масс воздуха, проносящихся в единицу времени перпендикулярно площади заданного размера. В ветродвигателе эта площадь определяется наветренной поверхностью репеллера. При учете высоты над уровнем моря, давления воздуха на ней и его температуры располагаемая мощность N (в кВт) на единицу площади определяется уравнением

N = 0,0000446 V 3 (м/с).

Коэффициент использования энергии ветра определяется обычно как отношение мощности, развиваемой на валу ветродвигателя, к располагаемой мощности ветрового потока, воздействующего на наветренную поверхность ветроколеса. Максимальным этот коэффициент становится при определенном соотношении между скоростью внешнего края лопасти ветроколеса w и скорости ветра u ; значение этого соотношения w /u зависит от типа ветродвигателя. Коэффициент использования энергии ветра зависит от вида ветроколеса и составляет от 5–10% (голландская мельница с плоскими крыльями, w /u = 2,5) до 35–40% (профилированный крыльчатый репеллер, 5 Ј w /u Ј 10).

Принцип действия всех ветродвигателей один: под напором ветра вращается ветроколесо с лопастями, передавая крутящий момент через систему передач валу генератора, вырабатывающего электроэнергию, водяному насосу. Чем больше диаметр ветроколеса, тем больший воз-душный поток оно захватывает и тем больше энергии вырабатывает аг-регат.

Традиционная компоновка ветряков – с горизонтальной осью вращения (рис.3 ) – неплохое решение для агрегатов малых размеров и мощностей. Когда же размахи лопастей выросли, такая компоновка оказалась неэффективной, так как на разной высоте ветер дует в разные стороны. В этом случае не только не удается оптимально ориентировать агрегат по ветру, но и возникает опасность разрушения лопастей. Кроме того, концы лопастей крупной установки, двигаясь с большой скоростью, создают шум. Однако главное препятствие на пути использования энергии ветра всеже экономическая – мощность агрегата остается небольшой и доля затрат на его эксплуатацию оказывается значительной. Маломощные агрегаты могут вырабатывать энергию примерно втрое более дорогую.

Рисунок 3 - Крыльчатый ветродвигатель

Существующие системы ветродвигателей по схеме устройства ветроколеса и его положению в потоке ветра разделяются на три класса.

Первый класс включает ветродвигатели, у которых ветровое колесо располагается в вертикальной плоскости; при этом плоскость вращения перпендикулярна направлению ветра, и, следовательно, ось ветроколеса параллельна потоку. Такие ветродвигатели называются крыльчатыми.

Быстроходностью называется отношение окружной скорости (ωR) конца лопасти к скорости ветра V:

V
Z = ωR .

Крыльчатые ветродвигатели, согласно ГОСТ 2656-44, в зависимости от типа ветроколеса и быстроходности разделяются на три группы (рисунок 4):

Ø ветродвигатели многолопастные, тихоходные, с быстроходностью Zn £2;

Ø ветродвигатели малолопастные, тихоходные, в том числе ветряные мельницы, с быстроходностью Zn > 2;

Ø ветродвигатели малолопастные, быстроходные, Zn ³3.

Рисунок.4 - Схемы ветроколес крыльчатых ветродвигателей: 1 – многолопастных; 2–4 – малолопастных

Ко второму классу относятся системы ветродвигателей с вертикальной осью вращения ветрового колеса . По конструктивной схеме они разбиваются на группы:

- карусельные , у которых нерабочие лопасти либо прикрываются ширмой, либо располагаются ребром против ветра (рисунок 5 поз. 1);

- роторные ветродвигатели системы Савониуса.

К третьему классу относятся ветродвигатели, работающие по принципу водяного мельничного колеса и называемыебарабанными (рисунок 5, поз.7) . У этих ветродвигателей ось вращения горизонтальна и перпендикулярна направлению ветра.

Рисунок 5 - Типы ветродвигателей: 1 – карусельный; 2–3 многолопастные; 4–5 – малолопастные; 6 – ортогональный; 7 - барабанный

Основные недостатки карусельных и барабанных ветродвигателей вытекают из самого принципа расположения рабочих поверхностей ветроколеса в потоке ветра:

1. Так как рабочие лопасти колеса перемещаются в направлении воздушного потока, ветровая нагрузка действует не одновременно на все лопасти, а поочерёдно. В результате каждая лопасть испытывает прерывную нагрузку, коэффициент использования энергии ветра получается весьма низким и не превышает 10 %,.

2. Движение поверхностей ветроколеса в направлении ветра не позволяет развить большие обороты, так как поверхности не могут двигаться быстрее ветра.

3. Размеры используемой части воздушного потока (ометаемая поверхность) малы по сравнению с размерами самого колеса, что значительно увеличивает его вес, отнесённый к единице установленной мощности ветродвигателя.

Карусельные ветродвигатели обладают тем преимуществом, что могут работать при любом направлении ветра не изменяя своего положения.

У роторных ветродвигателей системы Савониуса наибольший коэффициент использования энергии ветра 18 %.

Крыльчатые ветродвигатели свободны от перечисленных выше недостатков карусельных и барабанных ветродвигателей. Хорошие аэродинамические качества крыльчатых ветродвигателей, конструктивная возможность изготовлять их на большую мощность, относительно лёгкий вес на единицу мощности – основные преимущества ветродвигате-лей этого класса

Коммерческое применение крыльчатых ветродвигателей началось с 1980 года. За последние 14 лет мощность ветродвигателей увеличи-лась в 100 раз: от 20…60 кВт при диаметре ротора около 20 м в начале 1980 годов до 5000 кВт при диаметре ротора свыше 100 м к 2003 году (рис. 7.6).

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

Для крыльчатых ветродвигателей , наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастей крыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор.

Коэффициент использования энергии ветра (рисунок.4) у крыльчатых ветродвигателей намного выше, чем у карусельных. В то же время, у карусельных – намного больше момент вращения. Он максимален для карусельных лопастных агрегатов при нулевой относительной скорости ветра.

Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.

Различие в аэродинамике дает карусельным установкам преиму-щество в сравнении с традиционными ветряками (рисунок 7). При увеличении ско-рости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требова-ние – использование многополюсного генератора работающего на ма-лых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов (Мультипликатор [лат. multiplicator умножающий] – повышающий редуктор) не эффективно из-за низкого КПД последних.

Еще более важным преимуществом карусельной конструкции ста-ла ее способность без дополнительных ухищрений следить за тем «от-куда дует ветер», что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде.

Карусельный лопастный ветродвигатель наиболее прост в экс-плуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование макси-мальной скорости вращения в процессе работы. С увеличением нагруз-ки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.

При взаимодействии потока с лопастью возникают:

1) сила сопротивления, параллельная вектору относительной ско-рости набегающего потока;

2) подъемная сила, перпендикулярная силе сопротивления;

3) завихрение обтекающего лопасти потока;

4) турбулизация потока, т. е. хаотические возмущения его скоро-сти по величине и направлению;

5) препятствие для набегающего потока.

Препятствие для набегающего потока характеризуется парамет-ром, называемым геометрическим заполнением и равным отношению площади проекции лопастей на плоскость, перпендикулярную потоку, к ометаемой ими площади.

Основные классифицирующие признаки ветроэнергетических ус-тановок можно определить по следующим критериям:

1. Если ось вращения ветроколеса параллельна воздушному пото-ку, установка будет горизонтально-осевой, если ось вращения ветроко-леса перпендикулярна воздушному потоку – вертикально-осевой.

2. Установки, использующие в качестве вращающей силы силу сопротивления (драг-машины), как правило вращаются с линейной скоростью, меньшей скорости ветра, а установки, использующие подъем-ную силу (лифт-машины), имеют линейную скорость концов лопастей, существенно большую скорости ветра.

3. Для большинства установок геометрическое заполнение ветро-колеса определяется числом лопастей. ВЭУ с большим геометрическим заполнением ветроколеса развивают значительную мощность при относительно слабом ветре, и максимум мощности достигается при неболь-ших оборотах колеса. ВЭУ с малым заполнением достигают максимальной мощности при больших оборотах и дольше выходят на этот режим. Поэтому первые установки используются, например, в качестве водяных насосов и даже при слабом ветре сохраняют работоспособ-ность, вторые – в качестве электрогенераторов, где требуется высокая частота вращения.

4. Установки для непосредственного выполнения механической работы часто называют ветряной мельницей или турбиной, установки для производства электроэнергии, т. е. совокупность турбины и элек-трогенератора, называют ветроэлектрогенераторами, аэрогенераторами, а также установками с преобразованием энергии.

5. У аэрогенераторов, подключенных напрямую к мощной энерго-системе, частота вращения постоянна вследствие эффекта ассинхрони-зации, но такие установки менее эффективно используют энергию вет-ра, чем установки с переменной частотой вращения.

6. Ветроколесо может быть соединено с электрогенератором на-прямую (жесткое сопряжение) или через промежуточный преобразова-тель энергии, выполняющий роль буфера. Наличие буфера уменьшает последствия флуктуации частоты вращения ветроколеса, позволяет бо-лее эффективно использовать энергию ветра и мощность электрогенера-тора. Кроме того, существуют частично развязанные схемы соединения колеса с генератором, называемые мягкосопряженными. Таким образом, нежесткое соединение, наряду с инерцией ветроколеса, уменьшает влияние флуктуаций скорости ветра на выходные параметры электроге-нератора. Уменьшить это влияние позволяет также упругое соединение лопастей с осью ветроколеса, например, с помощью подпружинных шарниров.

Ветроколесо с горизонтальной осью. Рассмотрим горизонталь-но-осевые ветроколеса пропеллерного типа. Основной вращающей си-лой у колес этого типа является подъемная сила. Относительно ветра ветроколесо в рабочем положении может располагаться перед опорной башней или за ней.

В ветроэлектрогенераторах обычно используются двух- и трехло-пастные ветроколеса, последние отличаются очень плавным ходом. Электрогенератор и редуктор, соединяющий его с ветроколесом, распо-ложены обычно на верху опорной башни в поворотной головке.

Многолопастные колеса, развивающие большой крутящий момент при слабом ветре, используются для перекачки воды и других целей, не требующих высокой частоты вращения ветрового колеса.

Ветроэлектрогенераторы с вертикальной осью (рисунок 7) . Ветроэлекторо-генераторы с вертикальной осью вращения вследствие своей геометрии при любом направлении ветра находятся в рабочем положении. Кроме того, такая схема позволяет за счет только удлинения вала установить редуктор с генераторами внизу башни.

Принципиальными недостатками таких установок являются: го-раздо большая подверженность их усталостным разрушениям из-за бо-лее часто возникающих в них автоколебательных процессов и пульса-ция крутящего момента, приводящая к нежелательным пульсациям вы-ходных параметров генератора. Из-за этого подавляющее большинство ветроэлектрогенераторов выполнено по горизонтально-осевой схеме, однако исследования различных типов вертикально-осевых установок продолжаются.

Наиболее распространенные типы вертикально-осевых установок следующие:

1.Чашечныйротор(анемометр). Ветроколесо этого типа вра-щается силой сопротивления. Форма чашеобразной лопасти обеспечи-вает практически линейную зависимость частоты вращения колеса от скорости ветра.

2.РоторСавониуса. Это колесо также вращается силой сопро-тивления. Его лопасти выполнены из тонких изогнутых листов прямо-угольной формы, т. е. отличаются простотой и дешевизной. Вращаю-щий момент создается благодаря различному сопротивлению, оказываемому воздушному потоку вогнутой и выгнутой относительно него лопастями ротора. Из-за большого геометрического заполнения это вет-роколесо обладаем большим крутящим моментом и используется для перекачки воды.

3.РоторДарье. Вращающий момент создается подъемной силой, возникающей на двух или на трех тонких изогнутых несущих поверхно-стях, имеющих аэродинамический профиль. Подъемная сила макси-мальна в тот момент, когда лопасть с большой скоростью пересекает набегающий воздушный поток. Ротор Дарье используется в ветроэлек-трогенераторах. Раскручиваться самостоятельно ротор, как правило, не может, поэтому для его запуска обычно используется генератор, рабо-тающий в режиме двигателя.

4.РоторМасгрува. Лопасти этого ветроколеса в рабочем состоя-нии расположены вертикально, но имеют возможность вращаться или складываться вокруг горизонтальной оси при отключении. Существуют различные варианты роторов Масгрува, но все они отключаются при сильном ветре.

5.РоторЭванса. Лопасти этого ротора в аварийной ситуации и при управлении поворачиваются вокруг вертикальной оси.

Рисунок 7 - Ветроэлектрогенераторы с вертикальной осью

Концентраторы. Мощность ветроэнергоустановки зависит от эффективности использования энергии воздушного потока. Одним из способов ее повышения является использование специальных концен-траторов (усилителей) воздушного потока. Для горизонтально-осевых ветроэлектрогенераторов разработаны различные варианты таких кон-центраторов. Это могут быть диффузоры или конфузоры (дефлекторы), направляющие на ветроколесо воздушный поток с площади, большей ометаемой площади ротора, и некоторые другие устройства. Широкого распространения в промышленных установках концентраторы пока не получили.


устройство, преобразующее энергию ветра в энергию вращательного движения. Основным рабочим органом ветродвигателя является вращающийся агрегат - колесо , приводимое в движение ветром и жестко связанное с валом, вращение которого приводит в действие оборудование, выполняющее полезную работу. Вал устанавливается горизонтально или вертикально. Ветродвигатели обычно используются для выработки энергии, потребляемой периодически: при накачке воды в емкости, помоле зерна, во временных, аварийных и местных сетях электропитания. Историческая справка. Хотя приземные ветры дуют не всегда, меняют свое направление и сила их непостоянна, ветродвигатель представляет собой одну из древнейших машин для получения энергии из природных источников. Из-за сомнительной надежности древних письменных сообщений о ветродвигателях не вполне ясно, когда и где такие машины появились впервые. Но, судя по некоторым записям, они существовали уже до 7 в. н.э. Известно, что в Персии их применяли в 10 в., а в Западной Европе первые устройства этого типа появились в конце 12 в. В течение 16 в. окончательно сформировался шатровый тип голландской ветряной мельницы. Особых изменений в их конструкции не наблюдалось вплоть до начала 20 в., когда в результате исследований были значительно усовершенствованы формы и покрытия крыльев мельниц. Поскольку низкооборотные машины громоздки, во второй половине 20 в. стали строить высокооборотные ветродвигатели, т.е. такие, ветроколеса которых могут совершать большое число оборотов в минуту с высоким коэффициентом использования энергии ветра. Современные типы ветродвигателей. В настоящее время применяются три основных типа ветродвигателей - барабанный, крыльчатый (винтового типа) и роторный (с S-образным профилем репеллера). Барабанный и крыльчатый. Хотя ветроколесо барабанного типа имеет наименьший коэффициент использования энергии ветра по сравнению с другими современными репеллерами, применяется оно наиболее широко. На многих фермах с его помощью качают воду, если по какой-либо причине нет сетевого электричества. Типичная форма такого колеса с лопастями из листового металла приведена на рис.1. Ветроколеса барабанного и крыльчатого типа вращаются на горизонтальном валу, так что их необходимо поворачивать на ветер, чтобы получить наилучшие эксплуатационные характеристики. Для этого им придается руль направления - лопасть, расположенная в вертикальной плоскости, чем и обеспечивается разворот ветроколеса на ветер. Диаметр колеса крупнейшего в мире ветродвигателя крыльчатого типа составляет 53 м, максимальная ширина его лопасти равна 4,9 м. Ветроколесо напрямую соединено с электрическим генератором мощностью 1000 кВт, которая развивается при скорости ветра не менее 48 км/ч. Его лопасти регулируются таким образом, что скорость вращения ветроколеса остается постоянной и равной 30 об/мин в диапазоне скоростей ветра от 24 до 112 км/ч. Благодаря тому, что в местности, где располагают такие ветродвигатели, ветры дуют довольно часто, ветроэнергетическая установка обычно вырабатывает 50% максимальной мощности и питает общественную электросеть. Крыльчатые ветродвигатели широко применяются в отдаленных сельских районах для обеспечения электроэнергией ферм, в том числе для зарядки аккумуляторов систем радиосвязи. Их также используют в бортовых энергетических установках самолетов и управляемых ракет. S-образный ротор. Установленный на вертикальном валу S-образный ротор (рис.2) хорош тем, что ветродвигатель с таким репеллером не надо выводить на ветер. Хотя крутящий момент на его валу меняется от минимального до одной трети от максимального значения за полоборота, он не зависит от направления ветра. Когда гладкий круговой цилиндр вращается, находясь под действием ветра, на тело цилиндра действует сила, перпендикулярная направлению ветра. Это явление называется эффектом Магнуса, в честь немецкого физика , который его изучал (1852). В 1920-1930 А.Флеттнер применил вращающиеся цилиндры (роторы Флеттнера) и S-образные роторы взамен лопастных ветроколес, а также как движители корабля, который совершил переход из Европы в Америку и обратно. Коэффициент использования энергии ветра. Мощность, получаемая от ветра, обычно мала - менее 4 кВт развивает агрегат устаревшего типа голландской ветряной мельницы при скорости ветра 32 км/ч. Мощность потока ветра, которую можно использовать, образуется из кинетической энергии масс воздуха, проносящихся в единицу времени перпендикулярно площади заданного размера. В ветродвигателе эта площадь определяется наветренной поверхностью репеллера. При учете высоты над уровнем моря, давления воздуха на ней и его температуры располагаемая мощность N (в кВт) на единицу площади определяется уравнением N = 0,0000446 V3 (м/с). Коэффициент использования энергии ветра определяется обычно как отношение мощности, развиваемой на валу ветродвигателя, к располагаемой мощности ветрового потока, воздействующего на наветренную поверхность ветроколеса. Максимальным этот коэффициент становится при определенном соотношении между скоростью внешнего края лопасти ветроколеса w и скорости ветра u; значение этого соотношения w/u зависит от типа ветродвигателя. Коэффициент использования энергии ветра зависит от вида ветроколеса и составляет от 5-10% (голландская мельница с плоскими крыльями, w/u = 2,5) до 35-40% (профилированный крыльчатый репеллер, 5 ? w/u ? 10).

Типы ветродвигателей

Большинство типов ветродвигателей известны так давно, что история умалчивает имена их изобретателей. Основные разновидности ветроагрегатов изображены на рис. 13. Они делятся на две группы:

1. ветродвигатели с горизонтальной осью вращения (крыльчатые) (2-5);

2. ветродвигатели с вертикальной осью вращения (карусельные: лопастные (1) и ортогональные (6)).

Типы крыльчатых ветродвигателей отличаются только количеством лопастей.

Крыльчатые

Для крыльчатых ветродвигателей, наибольшая эффективность которых достигается при действии потока воздуха перпендикулярно к плоскости вращения лопастейкрыльев, требуется устройство автоматического поворота оси вращения. С этой целью применяют крыло-стабилизатор. Карусельные ветродвигатели обладают тем преимуществом, что могут работать при любом направлении ветра не изменяя своего положения. Коэффициент использования энергии ветра у крыльчатых ветродвигателей намного выше чем у карусельных. В то же время, у карусельных - намного больше момент вращения. Он максимален для карусельных лопастных агрегатов при нулевой относительной скорости ветра. Распространение крыльчатых ветроагрегатов объясняется величиной скорости их вращения. Они могут непосредственно соединяться с генератором электрического тока без мультипликатора. Скорость вращения крыльчатых ветродвигателей обратно пропорциональна количеству крыльев, поэтому агрегаты с количеством лопастей больше трех практически не используются.

Карусельные

Различие в аэродинамике дает карусельным установкам преимущество в сравнении с традиционными ветряками. При увеличении скорости ветра они быстро наращивают силу тяги, после чего скорость вращения стабилизируется. Карусельные ветродвигатели тихоходны и это позволяет использовать простые электрические схемы, например, с асинхронным генератором, без риска потерпеть аварию при случайном порыве ветра. Тихоходность выдвигает одно ограничивающее требование - использование многополюсного генератора работающего на малых оборотах. Такие генераторы не имеют широкого распространения, а использование мультипликаторов - повышающий редуктор не эффективно из-за низкого КПД последних. Еще более важным преимуществом карусельной конструкции стала ее способность без дополнительных ухищрений следить за тем «откуда дует ветер», что весьма существенно для приземных рыскающих потоков. Ветродвигатели подобного типа строятся в США, Японии, Англии, ФРГ, Канаде. Карусельный лопастный ветродвигатель наиболее прост в эксплуатации. Его конструкция обеспечивает максимальный момент при запуске ветродвигателя и автоматическое саморегулирование максимальной скорости вращения в процессе работы. С увеличением нагрузки уменьшается скорость вращения и возрастает вращающий момент вплоть до полной остановки.

Ортогональные

Ортогональные ветроагрегаты, как полагают специалисты, перспективны для большой энергетики. Сегодня перед ветропоклонниками ортогональных конструкций стоят определенные трудности. Среди них, в частности, проблема запуска. В ортогональных установках используется тот же профиль крыла, что и в дозвуковом самолете (см. рис. 13. (6)). Самолет, прежде чем «опереться» на подъемную силу крыла, должен разбежаться. Так же обстоит дело и в случае с ортогональной установкой. Сначала к ней нужно подвести энергию - раскрутить и довести до определенных аэродинамических параметров, а уже потом она сама перейдет из режима двигателя в режим генератора.Отбор мощности начинается при скорости ветра около 5 м/с, а номинальная мощность достигается при скорости 14-16 м/с. Предварительные расчеты ветроустановок предусматривают их использование в диапазоне от 50 до 20 000 кВт. В реалистичной установке мощностью 2000 кВт диаметр кольца, по которому движутся крылья, составит около 80 метров. У мощного ветродвигателя большие размеры. Однако можно обойтись и малыми - взять числом, а не размером. Снабдив каждый электрогенератор отдельным преобразователем можно просуммировать выходную мощность вырабатываемую генераторами. В этом случае повышается надежность и живучесть ветроустановки.

Проблемы эксплуатации промышленных ветрогенераторов

Промышленный ветрогенератор строится на подготовленной площадке за 7--10 дней. Получение разрешений регулирующих органов на строительство ветряной фермы может занимать год и более.Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:

· Неправильное устройство фундамента. Если фундамент башни неправильно рассчитан, или неправильно устроен дренаж фундамента, башня от сильного порыва ветра может упасть.

· Обледенение лопастей и других частей генератора. Обледенение способно увеличить массу лопастей и снизить эффективность работы ветрогенератора. Для эксплуатации в арктических областях части ветрогенератора должны быть изготовлены из специальных морозостойких материалов. Жидкости, используемые в генераторе, не должны замерзать. Может замёрзнуть оборудование, замеряющее скорость ветра. В этом случае эффективность ветрогенератора может серьёзно снизиться. Из-за обледенения приборы могут показывать низкую скорость ветра, и ротор останется неподвижным.

· Удары молний. Удары молний могут привести к пожару. На современных ветрогенераторах устанавливаются молниеотводящие системы.

· Отключение. При резких колебаниях скорости ветра срабатывает электрическая защита аппаратов входящих в состав системы, что снижает эффективность системы в целом. Так же для больших ветростанций большая вероятность срабатывания защиты на отходящих ЛЭП.

· Нестабильность работы генератора. Из-за того что в большинстве промышленных ветрогенерирующих установках стоят асинхронные генераторы, стабильная работа их зависит от постоянства напряжения в ЛЭП.

· Пожары. Пожар может возникнуть из-за трения вращающихся частей внутри гондолы, утечки масла из гидравлических систем, обрыва кабелей и т. д. Пожары ветрогенераторов редки, но их трудно тушить из-за отдалённости ветряных электростанций и большой высоты, на которой происходит пожар. На современных ветрогенераторах устанавливаются системы пожаротушения